Preauthorization is not required.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

RELATED PROTOCOL
Lumbar Spinal Fusion

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: Who are undergoing orthopedic surgery for trauma or fracture</td>
<td>Interventions of interest are: Computer-assisted navigation</td>
<td>Comparators of interest are: Conventional/manual alignment methods</td>
<td>Relevant outcomes include: Symptoms, Morbid events, Functional outcomes</td>
</tr>
<tr>
<td>Individuals: Who are undergoing ligament reconstruction</td>
<td>Interventions of interest are: Computer-assisted navigation</td>
<td>Comparators of interest are: Conventional/manual alignment methods</td>
<td>Relevant outcomes include: Symptoms, Morbid events, Functional outcomes</td>
</tr>
<tr>
<td>Individuals: Who are undergoing hip arthroplasty and periacetabular osteotomy</td>
<td>Interventions of interest are: Computer-assisted navigation</td>
<td>Comparators of interest are: Conventional/manual alignment methods</td>
<td>Relevant outcomes include: Symptoms, Morbid events, Functional outcomes</td>
</tr>
<tr>
<td>Individuals: Who are undergoing total knee arthroplasty</td>
<td>Interventions of interest are: Computer-assisted navigation</td>
<td>Comparators of interest are: Conventional/manual alignment methods</td>
<td>Relevant outcomes include: Symptoms, Morbid events, Functional outcomes</td>
</tr>
<tr>
<td>Individuals: Who are undergoing spine surgery</td>
<td>Interventions of interest are: Computer-assisted navigation</td>
<td>Comparators of interest are: Conventional/manual alignment methods</td>
<td>Relevant outcomes include: Symptoms, Morbid events, Functional outcomes</td>
</tr>
</tbody>
</table>

DESCRIPTION
Computer-assisted navigation in orthopedic procedures describes the use of computer-enabled tracking systems to facilitate alignment in a variety of surgical procedures, including fixation of fractures, ligament reconstruction, osteotomy, tumor resection, preparation of the bone for joint arthroplasty, and verification of the intended implant placement.
SUMMARY OF EVIDENCE

For individuals who are undergoing orthopedic surgery for trauma or fracture and receive computer-assisted navigation, the evidence includes 2 retrospective clinical trials, reviews, and in vitro studies. Relevant outcomes are symptoms, morbid events, and functional outcomes. Functional outcomes were not included in the first clinical trial, although it did note fewer complications with computer-assisted navigation versus conventional methods. The second trial found no differences between groups in rates of fracture reduction or screw positions. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who are undergoing ligament reconstruction and receive computer-assisted navigation, the evidence includes a systematic review of 5 randomized controlled trials (RCTs) of computer-assisted navigation versus conventional surgery for anterior and posterior cruciate ligament. Relevant outcomes are symptoms, morbid events, and functional outcomes. Trial results showed no consistent improvement of tunnel placement with computer-assisted navigation, and no trials looked at functional outcomes or need for revision surgery with computer-assisted navigation. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who are undergoing hip arthroplasty and periacetabular osteotomy and receive computer-assisted navigation, the evidence includes older RCTs, a systematic review, and comparison studies. Relevant outcomes are symptoms, morbid events, and functional outcomes. Evidence on the relative benefits of computer-assisted navigation with conventional or minimally invasive total hip arthroplasty is inconsistent, and more recent RCTs are lacking. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who are undergoing total knee arthroplasty and receive computer-assisted navigation, the evidence includes RCTs, systematic reviews of RCTs, and comparative studies. Relevant outcomes are symptoms, morbid events, and functional outcomes. The main difference found between total knee arthroplasty with computer-assisted navigation and total knee arthroplasty without computer-assisted navigation is increased surgical time with computer-assisted navigation. Few differences in clinical and functional outcomes were seen at up to 12 years post-procedure. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who are undergoing spine surgery and receive computer-assisted navigation, the evidence includes RCTs, comparative observational studies, and systematic reviews of those observational studies. Relevant outcomes are symptoms, morbid events, and functional outcomes. Computer-assisted navigation for pedicle screw insertion was consistently associated with lower rates of screw perforation relative to other screw insertion methods, but evidence on clinical outcomes is inconsistent or lacking, including long-term outcome follow-up. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

POLICY

Computer-assisted surgical navigation for orthopedic procedures is considered investigative.

BACKGROUND

IMPLANT ALIGNMENT FOR KNEE ARTHROPLASTY

For total knee arthroplasty, malalignment is commonly defined as a variation of more than 3° from the targeted position. Proper implant alignment is believed to be an important factor for minimizing long-term wear, the risk of osteolysis, and loosening of the prosthesis.
COMPUTER-ASSISTED NAVIGATION

The goal of computer-assisted navigation is to increase surgical accuracy and reduce the chance of malposition. In addition to reducing the risk of substantial malalignment, computer-assisted navigation may improve soft tissue balance and patellar tracking. Computer-assisted navigation is also being investigated for surgical procedures with limited visibility such as placement of the acetabular cup in total hip arthroplasty, resection of pelvic tumors, and minimally invasive orthopedic procedures. Other potential uses of computer-assisted navigation for surgical procedures of the appendicular skeleton include screw placement for fixation of femoral neck fractures, high tibial osteotomy, and tunnel alignment during the reconstruction of the anterior cruciate ligament.

Computer-assisted navigation devices may be image-based or non-image-based. Image-based devices use preoperative computed tomography scans and operative fluoroscopy to direct implant positioning. Newer non-image-based devices use information obtained in the operating room, typically with infrared probes. For total knee arthroplasty, specific anatomic reference points are made by fixing signaling transducers with pins into the femur and tibia. Signal-emitting cameras (e.g., infrared) detect the reflected signals and transmit the data to a dedicated computer. During the surgery, multiple surface points are taken from the distal femoral surfaces, tibial plateaus, and medial and lateral epicondyles. The femoral head center is typically calculated by kinematic methods that involve the movement of the thigh through a series of circular arcs, with the computer producing a three-dimensional model that includes the mechanical, transepicondylar, and tibial rotational axes. Computer-assisted navigation systems direct the positioning of the cutting blocks and placement of the prosthetic implants based on the digitized surface points and model of the bones in space. The accuracy of each step of the operation (cutting block placement, saw cut accuracy, seating of the implants) can be verified, thereby allowing adjustments to be made during surgery. For spine surgery, computer-assisted navigation may improve the accuracy of pedicle screw placement compared to conventional screw placement methods and limit radiation exposure to patients and surgical teams.

Computer-assisted navigation involves three steps: data acquisition, registration, and tracking.

Data Acquisition

Data can be acquired in 3 ways: fluoroscopically, guided by computed tomography scan or magnetic resonance imaging, or guided by imageless systems. These data are then used for registration and tracking.

Registration

Registration refers to the ability to relate images (i.e., radiographs, computed tomography scans, magnetic resonance imaging, or patients’ 3D anatomy) to the anatomic position in the surgical field. Registration techniques may require the placement of pins or “fiduciary markers” in the target bone. A surface-matching technique can also be used in which the shapes of the bone surface model generated from preoperative images are matched to surface data points collected during surgery.

Tracking

Tracking refers to the sensors and measurement devices that can provide feedback during surgery regarding the orientation and relative position of tools to bone anatomy. For example, optical or electromagnetic trackers can be attached to regular surgical tools, which then provide real-time information of the position and orientation of tool alignment concerning the bony anatomy of interest.

VERASENSE (OrthoSense) is a single-use device that replaces the standard plastic tibial trial spacer used in total knee arthroplasty. The device contains microprocessor sensors that quantify load and contact position of the femur on the tibia after resections have been made. The wireless sensors send the data to a graphic user interface that depicts the load. The device is intended to provide quantitative data on the alignment of the implant and soft tissue balancing in place of intraoperative “feel.”
iASSIST (Zimmer) is an accelerometer-based alignment system with a user interface built into disposable electronic pods that attach to the femoral and tibial alignment and resection guides. For the tibia, the alignment guide is fixed between the tibial spines and a claw on the malleoli. The relation between the electronic pod of the digitizer and the bone reference is registered by moving the limb into abduction, adduction, and neutral position. Once the information has been registered, the digitizer is removed, and the registration data are transferred to the electronic pod on the cutting guide. The cutting guide can be adjusted for varus/valgus alignment and tibial slope. A similar process is used for the femur. The pods use the wireless exchange of data and display the alignment information to the surgeon within the surgical field. A computer controller must also be present in the operating room.

REGULATORY STATUS

Because computer-assisted navigation is a surgical information system in which the surgeon is only acting on the information that is provided by the navigation system, surgical navigation systems generally are subject only to 510(k) clearances from the U.S. Food and Drug Administration (FDA). As such, the FDA does not require data documenting the intermediate or final health outcomes associated with computer-assisted navigation. (In contrast, robotic procedures, in which the actual surgery is robotically performed, are subject to the more rigorous requirement of the premarket approval application process.)

A variety of surgical navigation procedures have been cleared for marketing by the FDA through the 510(k) process with broad labeled indications. For example, The OEC FluoroTrak 9800 plus is marketed for locating anatomical structures anywhere on the human body.

Several navigation systems (e.g., PiGalileo™ Computer-Assisted Orthopedic Surgery System, PLUS Orthopedics; OrthoPilot® Navigation System, Braun; Navitrack® Navigation System, ORTHOsoft) have received the FDA clearance specifically for total knee arthroplasty. The FDA cleared indications for the PiGalileo™ system are representative. This system “is intended to be used in computer-assisted orthopedic surgery to aid the surgeon with bone cuts and implant positioning during joint replacement. It provides information to the surgeon that is used to place surgical instruments during surgery using anatomical landmarks and other data specifically obtained intraoperatively (e.g., ligament tension, limb alignment). Examples of some surgical procedures include but are not limited to:

- Total knee replacement supporting both bone referencing and ligament balancing techniques
- Minimally invasive total knee replacement.”

FDA product code: HAW.

In 2013, the VERASENSE™ Knee System (OrthoSensor) and the iASSIST™ Knee (Zimmer) were cleared for marketing by the FDA through the 510(k) process. FDA product codes: ONN, OLO.

Several computer-assisted navigation devices cleared by the FDA are listed in the table below.

Table 1. Computer-Assisted Navigation Devices Cleared by the U.S. Food and Drug Administration

<table>
<thead>
<tr>
<th>Device</th>
<th>Manufacturer</th>
<th>Date Cleared</th>
<th>510(k) No.</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Manufacturer</td>
<td>Date Cleared</td>
<td>510(k) No.</td>
<td>Indication</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>NuVasive Pulse System</td>
<td>NuVasive Inc.</td>
<td>6/29/2018</td>
<td>K180038</td>
<td>Computer-assisted Navigation for Orthopedic Surgery</td>
</tr>
<tr>
<td>VERASENSE for Zimmer Biomet Persona</td>
<td>OrthoSensor Inc.</td>
<td>6/7/2018</td>
<td>K180459</td>
<td>Computer-assisted Navigation for Orthopedic Surgery</td>
</tr>
<tr>
<td>NuVasive Next Generation NVM5 System</td>
<td>NUVASIVE Inc.</td>
<td>3/16/2017</td>
<td>K162313</td>
<td>Computer-assisted Navigation for Orthopedic Surgery</td>
</tr>
<tr>
<td>JointPoint</td>
<td>JointPoint Inc.</td>
<td>8/3/2016</td>
<td>K160284</td>
<td>Computer-assisted Navigation for Orthopedic Surgery</td>
</tr>
<tr>
<td>ExactechGPS</td>
<td>Blue Ortho</td>
<td>7/13/2016</td>
<td>K152764</td>
<td>Computer-assisted Navigation for Orthopedic Surgery</td>
</tr>
<tr>
<td>Versense Knee System</td>
<td>OrthoSensor Inc.</td>
<td>4/15/2016</td>
<td>K150372</td>
<td>Computer-assisted Navigation for Orthopedic Surgery</td>
</tr>
<tr>
<td>CTC TCAT(R)-TPLAN(R) Surgical System</td>
<td>Curexo Technology Corporation</td>
<td>8/18/2014</td>
<td>K140585</td>
<td>Computer-assisted Navigation for Orthopedic Surgery</td>
</tr>
</tbody>
</table>

Services that are the subject of a clinical trial do not meet our Technology Assessment and Medically Necessary Services Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment and Medically Necessary Services Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

REFERENCES

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

24. Hsu RW, Hsu WH, Shen WJ, et al. Comparison of computer-assisted navigation and conventional instrumenta-
tion for bilateral total knee arthroplasty: The outcomes at mid-term follow-up. Medicine (Baltimore). Nov
2019;98(47):e18083. PMID 31764842
25. Song EK, Agrawal PR, Kim SK, et al. A randomized controlled clinical and radiological trial about outcomes of
navigation-assisted TKA compared to conventional TKA: long-term follow-up. Knee Surg Sports Traumatol
ventional Total Knee Arthroplasty: A Prospective Randomized Comparative Trial. J Arthroplasty. May 2018;
33(5):1404-1411. PMID 29426792
27. Kim YH, Park JW, Kim JS. Computer-navigated versus conventional total knee arthroplasty a prospective ran-
28. Hoppe S, Mainzer JD, Frauchiger L, et al. More accurate component alignment in navigated total knee ar-
throplasty has no clinical benefit at 5-year follow-up. Acta Orthop. Dec 2012;83(6):629-33. PMID 23140107
30. Hoffart HE, Langenstein E, Vasak N. A prospective study comparing the functional outcome of computer-
22323685
PMID 27775460
34. Laine T, Lund T, Ylikoski M, et al. Accuracy of pedicle screw insertion with and without computer assistance:
a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. Jun 2000;9(3):235-40. PMID
10905443
35. Rajasekaran S, Vidyaadhara S, Ramesh P, et al. Randomized clinical study to compare the accuracy of navi-
Jan 15 2007;32(2):E56-64. PMID 17224800
36. Villard J, Ryang YM, Demetriades AK, et al. Radiation exposure to the surgeon and the patient during poste-
rior lumbar spinal instrumentation: a prospective randomized comparison of navigated versus non-navig-
37. Gelalis ID, Paschos NK, Pakos EE, et al. Accuracy of pedicle screw placement: a systematic review of prospec-
tive in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. Feb
2012;21(2):247-55. PMID 21901328
38. Shin BJ, James AR, Njoku IU, et al. Pedicle screw navigation: a systematic review and meta-analysis of perfo-
PMID 22724594
39. Staartjes VE, Klukowska AM, Schroder ML. Pedicle Screw Revision in Robot-Guided, Navigated, and Freehand
Thoracolumbar Instrumentation: A Systematic Review and Meta-Analysis. World Neurosurg. Aug 2018;116:
433-443.e8. PMID 29859354
Screws in the Spine: A Comprehensive Systematic Review and Meta-Analysis of 51,161 Screws. World Neu-
rosurg. Jun 2019;126:664-678.e3. PMID 30880208
41. Arand M, Hartwig E, Kinzl L, et al. Spinal navigation in tumor surgery of the thoracic spine: first clinical re-