Protocol

Hematopoietic Cell Transplantation in the Treatment of Germ Cell Tumors

(80135)
(Formerly Hematopoietic Stem Cell Transplantation in the Treatment of Germ Cell Tumors)

<table>
<thead>
<tr>
<th>Medical Benefit</th>
<th>Effective Date</th>
<th>Next Review Date</th>
<th>Preauthorization</th>
<th>Review Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04/01/13</td>
<td>05/18</td>
<td>Yes</td>
<td>04/07, 05/08, 05/09, 05/10, 05/11, 05/12, 05/13, 05/14, 05/15, 05/16, 05/17</td>
</tr>
</tbody>
</table>

Preauthorization is required and must be obtained through Case Management.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • With previously untreated germ cell tumors</td>
<td>Interventions of interest are: • First-line treatment with autologous hematopoietic cell transplantation</td>
<td>Comparators of interest are: • Standard-dose chemotherapy • Surgical treatment</td>
<td>Relevant outcomes include: • Overall survival • Disease-specific survival • Treatment-related mortality • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • With relapsed or refractory germ cell tumors</td>
<td>Interventions of interest are: • Autologous hematopoietic cell transplantation</td>
<td>Comparators of interest are: • Standard-dose chemotherapy</td>
<td>Relevant outcomes include: • Overall survival • Disease-specific survival • Treatment-related mortality • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • With germ cell tumors</td>
<td>Interventions of interest are: • Tandem and sequential hematopoietic cell transplantation</td>
<td>Comparators of interest are: • Standard-dose chemotherapy • Single autologous hematopoietic cell transplantation</td>
<td>Relevant outcomes include: • Overall survival • Disease-specific survival • Treatment-related mortality • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • With germ cell tumors</td>
<td>Interventions of interest are: • Allogeneic hematopoietic cell transplantation</td>
<td>Comparators of interest are: • Standard-dose chemotherapy • Autologous hematopoietic cell transplantation</td>
<td>Relevant outcomes include: • Overall survival • Disease-specific survival • Treatment-related mortality • Treatment-related morbidity</td>
</tr>
</tbody>
</table>

Description

Therapy for germ cell tumors is generally dictated by several factors, including disease stage, tumor histology, site of tumor primary, and response to chemotherapy. Patients with unfavorable prognostic factors may be candidates for hematopoietic cell transplantation (HCT).
Summary of Evidence

For individuals who have previously untreated germ cell tumors who receive first-line treatment with autologous HCT, the evidence includes randomized controlled trials (RCTs). Relevant outcomes are overall survival, disease-specific survival, and treatment-related mortality and morbidity. The available trials found autologous HCT as initial therapy for germ cell tumors did not significantly improve outcomes compared with alternative therapy (e.g., standard-dose chemotherapy). Study sample sizes were relatively small and may have been underpowered to detect differences between groups. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have relapsed or refractory germ cell tumors who receive autologous HCT, the evidence includes one RCT and several case series. Relevant outcomes are overall survival, disease-specific survival, and treatment-related mortality and morbidity. The RCT did not find significant differences in outcomes between autologous HCT plus high-dose chemotherapy and standard-dose chemotherapy. Case series found three-year overall survival rates that ranged from 55% to 60%; these studies lacked comparison groups. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have germ cell tumors who receive tandem or sequential HCT, the evidence includes one RCT, several retrospective cohort studies, and a comparative effectiveness review. Relevant outcomes are overall survival, disease-specific survival, and treatment-related mortality and morbidity. The RCT found a higher rate of treatment-related mortality with sequential HCT than with single HCT. However, five-year survival outcomes did not differ significantly between groups. Overall, the available studies have included heterogeneous patient populations, in different salvage treatment settings (i.e., first vs. subsequent salvage therapy), and have lacked a universally accepted prognostic scoring system to risk-stratify patients. Tandem or sequential HCT has not shown benefit in patients with primary mediastinal germ cell tumors. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have germ cell tumors who receive allogeneic HCT, the evidence includes a case report. Relevant outcomes are overall survival, disease-specific survival, and treatment-related mortality and morbidity. There were no RCTs or non-RCTs evaluating allogeneic HCT for germ cell tumors. One 2007 case report described successful treatment of a refractory mediastinal germ cell tumor with allogeneic HCT. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy

Single autologous hematopoietic cell transplantation (HCT) may be considered medically necessary as salvage therapy for germ-cell tumors:

- in patients with favorable prognostic factors that have failed a previous course of conventional-dose salvage chemotherapy; or
- in patients with unfavorable prognostic factors as initial treatment of first relapse (i.e., without a course of conventional-dose salvage chemotherapy) and in patients with platinum-refractory disease. (See Policy Guidelines for prognostic factors.)

Tandem or sequential autologous HCT may be considered medically necessary for the treatment of testicular tumors either as salvage therapy or with platinum-refractory disease.

Autologous HCT is considered investigational as a component of first-line treatment for germ-cell tumors.

Allogeneic HCT is considered investigational to treat germ-cell tumors, including, but not limited to its use as therapy after a prior failed autologous HCT.
Individual transplant facilities may have their own additional requirements or protocols that must be met in order for the patient to be eligible for a transplant at their facility.

The favorable and unfavorable prognostic factors listed below are derived from the current National Comprehensive Cancer Network (NCCN) guidelines and the DeVita et al’s textbook *Cancer Principles and Practice of Oncology* (2008, pp. 1463-85).

Patients with favorable prognostic factors include those with a testis or retroperitoneal primary site, a complete response to initial chemotherapy, low levels of serum markers, and low volume disease. Patients with unfavorable prognostic factors are those with an incomplete response to initial therapy or relapsing mediastinal non-seminomatous germ-cell tumors.

Medicare Advantage

If a transplant is needed, we arrange to have the transplant center review and decide whether the patient is an appropriate candidate for the transplant.

Background

Germ Cell Tumors

Germ cell tumors are composed primarily of testicular neoplasms (seminomas or nonseminomatous tumors) as well as ovarian and extragonadal germ cell tumors (e.g., retroperitoneal or mediastinal tumors). Germ cell tumors are classified according to their histology, stage, prognosis, and response to chemotherapy.

Germ cell tumor histologies include seminoma, embryonal carcinoma, teratoma, choriocarcinoma, yolk sac tumor, and mixed germ cell tumors. Seminomas are the most common; all other types are collectively referred to as nonseminomatous germ cell tumors.

Stage is dependent on location and extent of the tumor, using the American Joint Committee on Cancer’s TNM system. TNM stages, modified by serum concentrations of markers for tumor burden (S0-3) when available, are grouped by similar prognoses. Markers used for germ cell tumors include human β-chorionic gonadotropin (B-hCG), lactate dehydrogenase (LDH), and alpha fetoprotein (AFP). However, most patients with pure seminoma have normal AFP concentrations. For testicular tumors, stages IA to B tumors are limited to the testis (no involved nodes or distant metastases) and no marker elevations (S0); stages IIA to C have increasing size and number of tumor-involved lymph nodes, and at least one marker moderately elevated above the normal range (S1); and stages IIIA to C have distant metastases and/or marker elevations greater than specified thresholds (S2-3).

Germ cell tumors also are divided into good-, intermediate-, or poor-risk categories based on histology, site, and extent of primary tumor, and on serum marker levels. Good-risk pure seminomas can be at any primary site but are without nonpulmonary visceral metastases or marker elevations. Intermediate-risk pure seminomas have nonpulmonary visceral metastases with or without elevated hCG and/or LDH. There are no poor-risk pure seminomas, but mixed histology tumors and seminomas with elevated AFP (due to mixture with nonseminomatous components) are managed as nonseminomatous germ cell tumors. Good- and intermediate-risk nonseminomatous germ cell tumors have testicular or retroperitoneal tumors without nonpulmonary visceral metastases, and either S1 (good risk) or S2 (intermediate) levels of marker elevations. Poor-risk tumors have mediastinal primary tumors, or nonpulmonary visceral metastases, or the highest level (S3) of marker elevations.
Therapy for germ cell tumors is generally dictated by stage, risk subgroup, and tumor histology. Testicular cancer is divided into seminomatous and nonseminomatous types for treatment planning because seminomas are more sensitive to radiotherapy. Stage I testicular seminomas may be treated by orchietomy with or without radiation or single-dose carboplatin adjuvant therapy. Nonseminomatous stage I testicular tumors may be treated with orchietomy with or without retroperitoneal lymph node dissection. Higher stage disease typically involves treatment that incorporates chemotherapy. First-line chemotherapy for good- and intermediate-risk patients with higher stage disease is usually three or four cycles of a regimen combining cisplatin and etoposide, with or without bleomycin depending on histology and risk group. Chemotherapy is often followed by surgery to remove residual masses. Second-line therapy often consists of combined therapy with ifosfamide/mesna and cisplatin, plus vinblastine, paclitaxel, or etoposide (if not used for first-line treatment). Patients whose tumors are resistant to cisplatin may receive carboplatin-containing regimens. The probability of long-term continuous complete remission diminishes with each successive relapse.

Hematopoietic Cell Transplantation

HCT is a procedure in which hematopoietic stem cells are infused to restore bone marrow function in cancer patients who receive bone-marrow-toxic doses of drugs with or without whole body radiotherapy. Hematopoietic stem cells may be obtained from the transplant recipient (autologous HCT) or from a donor (allogeneic HCT). They can be harvested from bone marrow, peripheral blood, or umbilical cord blood shortly after delivery of neonates. Although cord blood is an allogeneic source, the stem cells in it are antigenically “naive” and thus are associated with a lower incidence of rejection or graft-versus-host disease. Cord blood is discussed in detail in the Placental and Umbilical Cord Blood as a Source of Stem Cells Protocol.

Immunologic compatibility between infused hematopoietic stem cells and the recipient is not an issue in autologous HCT. However, immunologic compatibility between donor and patient is a critical factor for achieving a good outcome of allogeneic HCT. Compatibility is established by typing of human leukocyte antigens (HLA) using cellular, serologic, or molecular techniques. HLA refers to the tissue type expressed at the class I and II loci on chromosome 6. Depending on the disease being treated, an acceptable donor will match the patient at all or most of the HLA loci (with the exception of umbilical cord blood).

Regulatory Status

The U.S. Food and Drug Administration regulates human cells and tissues intended for implantation, transplantation, or infusion through the Center for Biologics Evaluation and Research, under Code of Federal Regulation (CFR) title 21, parts 1270 and 1271. Hematopoietic stem cells are included in these regulations.

Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.
References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

15. Suleiman Y, Siddiqui BK, Brames MJ, et al. Salvage therapy with high-dose chemotherapy and peripheral
blood stem cell transplant in patients with primary mediastinal nonseminomatous germ cell tumors. Biol
Jun 2013; 11(2):121-127. PMID 23062817
18. Goodwin A, Gurney H, Gottlieb D. Allogeneic bone marrow transplant for refractory mediastinal germ cell
17229257
transplantation: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood
Marrow Transplant. Nov 2015; 21(11):1863-1869. PMID 26256941