Genetic Testing for Predisposition to Inherited Hypertrophic Cardiomyopathy

Medical Benefit
- **Effective Date:** 07/01/16
- **Next Review Date:** 03/19

Preauthorization
- Yes
- **Review Dates:** 03/12, 03/13, 03/14, 03/15, 03/16, 03/17, 03/18

Preauthorization is required.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • Who are asymptomatic with risk for hypertrophic cardiomyopathy because of a positive family history</td>
<td>Interventions of interest are: • Testing for a specific hypertrophic cardiomyopathy‒related variant identified in affected family member(s)</td>
<td>Comparators of interest are: • Clinical management without genetic testing</td>
<td>Relevant outcomes include: • Overall survival • Test accuracy • Test validity • Changes in reproductive decision making • Symptoms • Morbid events</td>
</tr>
<tr>
<td>Individuals: • Who are asymptomatic with risk for hypertrophic cardiomyopathy because of a positive family history</td>
<td>Interventions of interest are: • Nonspecific testing for a hypertrophic cardiomyopathy‒related variant</td>
<td>Comparators of interest are: • Clinical management without genetic testing</td>
<td>Relevant outcomes include: • Overall survival • Test accuracy • Test validity • Changes in reproductive decision making • Symptoms • Morbid events</td>
</tr>
</tbody>
</table>

Description

Familial hypertrophic cardiomyopathy (HCM) is an inherited condition that is caused by a disease-associated variant in one or more of the cardiac sarcomere genes. HCM is associated with numerous cardiac abnormalities, the most serious of which is sudden cardiac death. Genetic testing for HCM-associated variants is currently available through a number of commercial laboratories.

Summary of Evidence

For individuals who are asymptomatic with risk for HCM because of a positive family history who receive testing for a specific HCM-related variant identified in affected family member(s), the evidence includes studies reporting on the analytic and clinical validity of testing. Relevant outcomes are overall survival, test accuracy and validity, changes in reproductive decision making, symptoms, and morbid events. For individuals at risk for HCM (first-degree relatives), genetic testing is most useful when there is a known disease-associated variant in the family. In this situation, genetic testing will establish the presence or absence of the same variant in a close
relative with a high degree of certainty. Absence of this variant will establish that the individual has not inherited the familial predisposition to HCM and thus has a similar risk of developing HCM as the general population. Such patients will no longer need ongoing surveillance for the presence of clinical signs of HCM. Although no direct evidence comparing outcomes for at-risk individuals managed with and without genetic testing was identified, there is a strong chain of evidence that management changes can improve outcomes with genetic testing when there is a known familial variant. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic with risk for HCM because of a positive family history who receive non-specific testing for a HCM-related variant, the evidence includes studies reporting on the analytic and clinical validity of testing. Relevant outcomes are overall survival, test accuracy and validity, changes in reproductive decision making, symptoms, and morbid events. Given the wide genetic variation in HCM and the likelihood that not all causative variants have been identified, there is imperfect clinical sensitivity. Therefore, a negative test is not sufficient to rule out a disease-associated variant in patients without a known family variant. For at-risk individuals without a known variant in the family, there is no clear relation between testing and improved outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy

Genetic testing for predisposition to hypertrophic cardiomyopathy (HCM) may be considered medically necessary for individuals who are at risk for development of HCM, defined as having a first-degree relative with established HCM, when there is a known pathogenic gene variant present in that affected relative (See Policy Guidelines).

Genetic testing for predisposition to HCM is considered not medically necessary for patients with a family history of HCM in which a first-degree relative with established HCM has tested negative for pathogenic variants.

Genetic testing for predisposition to HCM is considered investigational for all other patient populations, including but not limited to individuals who have a first-degree relative with clinical HCM, but in whom genetic testing is unavailable.

Policy Guidelines

Due to the complexity of genetic testing for HCM and the potential for misinterpretation of results, the decision to test and the interpretation of test results should be performed by, or in consultation with, an expert in the area of medical genetics and/or HCM.

To inform and direct genetic testing for at-risk individuals, genetic testing should be initially performed in at least one close relative with definite HCM (index case), if possible. Recommendations indicate that, when possible, genetic testing for HCM be performed in an affected family member so that testing in unaffected, at-risk family members can focus on the mutation found in the affected family member. This testing is intended to document whether a known pathogenic variant is present in the family, and optimize the predictive value of predisposition testing for at-risk relatives.

Because there are varying degrees of penetrance for different HCM mutations, consideration for testing of second- or third-degree relatives may be appropriate in certain circumstances. Some judgment should be allowed for these decisions, for example, in the case of a small family pedigree. Consultation with an expert in medical genetics and/or the genetics of HCM, in conjunction with a detailed pedigree analysis, is appropriate when testing of second- or third-degree relatives is considered.
Genetics Nomenclature Update

Human Genome Variation Society (HGVS) nomenclature is used to report information on variants found in DNA and serves as an international standard in DNA diagnostics. It is being implemented for genetic testing medical evidence review updates starting in 2017 (see Table PG1). HGVS nomenclature is recommended by HGVS, the Human Variome Project, and the Human Genome Organization (HUGO).

The American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) standards and guidelines for interpretation of sequence variants represent expert opinion from ACMG, AMP, and the College of American Pathologists. These recommendations primarily apply to genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. Table PG2 shows the recommended standard terminology—“pathogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”—to describe variants identified that cause Mendelian disorders.

<table>
<thead>
<tr>
<th>Previous</th>
<th>Updated</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation</td>
<td>Disease-associated variant</td>
<td>Disease-associated change in the DNA sequence</td>
</tr>
<tr>
<td>Variant</td>
<td>Change in the DNA sequence</td>
<td></td>
</tr>
<tr>
<td>Familial variant</td>
<td>Disease-associated variant identified in a proband for use in subsequent targeted genetic testing in first-degree relatives</td>
<td></td>
</tr>
</tbody>
</table>

Table PG2. ACMG-AMP Standards and Guidelines for Variant Classification

<table>
<thead>
<tr>
<th>Variant Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic</td>
<td>Disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Likely pathogenic</td>
<td>Likely disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Variant of uncertain significance</td>
<td>Change in DNA sequence with uncertain effects on disease</td>
</tr>
<tr>
<td>Likely benign</td>
<td>Likely benign change in the DNA sequence</td>
</tr>
<tr>
<td>Benign</td>
<td>Benign change in the DNA sequence</td>
</tr>
</tbody>
</table>

ACMG: American College of Medical Genetics and Genomics; AMP: Association for Molecular Pathology.

Genetic Counseling

Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and experts recommend formal genetic counseling in most cases when genetic testing for an inherited condition is considered. The interpretation of the results of genetic tests and the understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will assist individuals in understanding the possible benefits and harms of genetic testing, including the possible impact of the information on the individual’s family. Genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing. Genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

Background

Familial Hypertrophic Cardiomyopathy

HCM is the most common genetic cardiovascular condition, with a phenotypic prevalence of approximately one (0.2%) in 500 adults. It is the most common cause of sudden cardiac death (SCD) in adults younger than 35 years of age and is probably also the most common cause of death in young athletes. The overall mortality rate for patients with HCM is estimated to be 1% per year in the adult population.

The genetic basis for HCM is a defect in the cardiac sarcomere, which is the basic contractile unit of cardiac myocytes and is composed of a number of different protein structures. Around 1400 disease-associated variants in at least 18 different genes have been identified. Approximately 90% of pathogenic variants are missense (i.e.,
one amino acid replaced for another), and the strongest evidence for pathogenicity is available for 11 genes coding for thick filament proteins (MYH7, MYL2, MYL3), thin filament proteins (TNNT2, TNNI3, TNNC1, TPM1, ACTC), intermediate filament proteins (MYBPC3), and the Z-disc adjoining the sarcomere (ACTN2, MYOZ2). Variants in myosin heavy chain (MYH7) and myosin-binding protein C (MYBPC3) are the most common and account for roughly 80% of sarcomeric HCM. These genetic defects are inherited in an autosomal dominant pattern with rare exceptions. In patients with clinically documented HCM, genetic abnormalities can be identified in approximately 60%._^{5,10} Most patients with clinically documented disease are demonstrated to have a familial pattern, although some exceptions are found presumably due to de novo variants._^{10}

Diagnosis

The clinical diagnosis of HCM depends on the presence of left ventricular hypertrophy (LVH), measured by echocardiography or magnetic resonance imaging, in the absence of other known causative factors such as valvular disease, long-standing hypertension, or other myocardial disease._^{7} In addition to primary cardiac disorders, there are systemic diseases that can lead to LVH and thus “mimic” HCM. These include infiltrative diseases such as amyloidosis, glycogen storage diseases (e.g., Fabry disease, Pompe disease), and neuromuscular disorders (e.g., Noonan syndrome, Friedreich ataxia)._^{10} These disorders need to be excluded before a diagnosis of familial HCM is made.

HCM is a very heterogeneous disorder. Manifestations range from subclinical, asymptomatic disease to severe life-threatening disease. Wide phenotypic variability exists among individuals, even when an identical variant is present, including among affected family members._^{2} This variability in clinical expression may be related to environmental factors and modifier genes._^{11} A large percentage of patients with HCM, perhaps the majority of all HCM patients, are asymptomatic or have minimal symptoms._^{10,11} These patients do not require treatment and are not generally at high risk for SCD. A subset of patients has severe disease that causes a major impact on quality of life and life expectancy. Severe disease can lead to disabling symptoms, as well as complications of HCM, including heart failure and malignant ventricular arrhythmias. Symptoms and presentation may include SCD due to unpredictable ventricular tachyarrhythmias, heart failure, or atrial fibrillation, or some combination._^{12} Management of patients with HCM involves treating cardiac comorbidities, avoiding therapies that may worsen obstructive symptoms, treating obstructive symptoms with β-blockers, calcium channel blockers, and (if symptoms persist) invasive therapy with surgical myectomy or alcohol ablation, optimizing treatment for heart failure, if present, and SCD risk stratification. ICD implantation may be indicated if there is a family history of SCD.

Diagnostic screening of first-degree relatives and other family members is an important component of HCM management. Guidelines have been established for screening in clinically unaffected relatives of affected individuals. Screening with physical examination, electrocardiography, and echocardiography is recommended every 12 to 18 months for individuals ages 12 to 18 years and every three to five years for adults._^{11} Additional screening is recommended for any change in symptoms that might indicate the development of HCM._^{11}

Genetic Testing

Genetic testing has been proposed as a component of screening at-risk individuals to determine predisposition to HCM among those patients at risk. Patients at risk for HCM are defined as individuals who have a close relative with established HCM. Results of genetic testing may influence management of at-risk individuals, which may in turn lead to improved outcomes. Furthermore, results of genetic testing may have implications for decision making in the areas of reproduction, employment, and leisure activities.

Commercial testing has been available since May 2003, and numerous companies currently offer genetic testing for HCM._^{6,13-16} Testing is performed either as comprehensive testing or targeted gene testing. Comprehensive testing, which is done for an individual without a known genetic variant in the family, analyzes the genes that
are most commonly associated with genetic variants for HCM and evaluates whether any potentially pathogenic variants are present. Some available panels include testing for multisystem storage diseases that may include cardiac hypertrophy, such as Fabry disease (GLA), familial transthyretin amyloidosis (TTR), X-linked Danon disease (LAMP2).

Other panels include testing for genes related to HCM but also those associated with other cardiac disorders. For example, the Comprehensive Cardiomyopathy panel (ApolloGen, Irvine, CA) is an next-generation sequencing (NGS) panel of 44 genes associated with HCM, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, catecholaminergic polymorphic ventricular tachycardia, left ventricular noncompaction syndrome, Danon syndrome, Fabry disease, Barth syndrome, and transthyretin amyloidosis.

For a patient with a known variant in the family, targeted testing is performed. Targeted variant testing evaluates for the presence or absence of a single variant known to exist in a close relative.

It can be difficult to determine the pathogenicity of genetic variants associated with HCM. Some studies have reported that assignment of pathogenicity has a relatively high error rate and that classification changes over time.17, 18 With NGS and whole-exome sequencing techniques, the sensitivity of identifying variants on the specified genes has increased substantially. At the same time, the number of variants of uncertain significance is also increased with NGS. In addition, the percentage of individuals who have more than one variant that is thought to be pathogenic is increasing. A 2013 study reported that 9.5% (19/200) patients from China with HCM had multiple pathogenic variants and that the number of variants correlated with severity of disease.19

Regulatory Status

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Sequencing tests for hypertrophic cardiomyopathy (HCM) are available under the auspices of CLIA. Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration (FDA) has chosen not to require any regulatory review of this test.

No assay kits have been approved by FDA for genetic testing for HCM.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

37. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. Aug 2011; 8(8):1308-1339. PMID 21787999