Drug Testing in Pain Management and Substance Abuse Treatment

(Formerly Urine Drug Testing in Pain Management and Substance Abuse Treatment)

Medical Benefit
- **Effective Date:** 10/01/16
- **Next Review Date:** 07/17

Preauthorization
- **No Review Dates:** 07/15, 07/16
- **Preauthorization is not required.**

The following Protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Populations

<table>
<thead>
<tr>
<th>Individuals:</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>With chronic pain treated with opioids</td>
<td>Interventions of interest are: Urine drug testing</td>
<td>Comparators of interest are: No urine drug testing</td>
<td>Relevant outcomes include: Test accuracy, Test validity, Health status measures, Resource utilization</td>
</tr>
<tr>
<td>With a drug addiction and are in substance abuse treatment</td>
<td>Interventions of interest are: Urine drug testing</td>
<td>Comparators of interest are: No urine drug testing</td>
<td>Relevant outcomes include: Test accuracy, Test validity, Health status measures, Resource utilization</td>
</tr>
<tr>
<td>With chronic pain treated with opioids or with a drug addiction in substance abuse</td>
<td>Interventions of interest are: Oral fluid or hair drug testing</td>
<td>Comparators of interest are: No testing, Urine drug testing</td>
<td>Relevant outcomes include: Test accuracy, Test validity, Health status measures, Resource utilization</td>
</tr>
</tbody>
</table>

Description

Patients in pain management programs and substance abuse treatment may misuse prescribed opioids and/or may use nonprescribed drugs. Thus, these patients are often assessed before treatment and monitored while they are receiving treatment. Urine drug testing (UDT) can be part of this monitoring strategy; it is most often used as part of a multifaceted intervention that includes other components such as patient contracts.

Summary of Evidence

The evidence for urine drug testing (UDT) in individuals who have chronic pain treated with opioids or who have a drug addiction and are in substance abuse treatment includes one well-conducted diagnostic accuracy study and one study on eligibility for take-home methadone. Relevant outcomes are test accuracy and validity, health status measures, and resource utilization. Few studies have evaluated the accuracy of UDT outside of the Protocol.
research setting. One study identified evaluated diagnostic accuracy of urine testing compared with a valid reference standard with individuals in a pain management setting; no studies assessed individuals undergoing substance abuse treatment. In terms of clinical utility, for pain management patients, there are no randomized controlled trials (RCTs) that isolate the potential effect of UDT on patient management or health outcomes. One RCT was identified on UDT of patients in substance abuse treatment; that trial focused on the specific situation of testing to determine eligibility for take-home methadone. The current published evidence does not permit conclusions on the impact of UDT on clinical outcomes.

The evidence for oral fluid and hair drug testing in individuals who have chronic pain treated with opioids or who have a drug addiction and are in substance abuse treatment includes several diagnostic accuracy studies. Relevant outcomes include test and validity, health status measures, and resource utilization. Two studies of pain management patients and one of substance abuse treatment patients have evaluated diagnostic accuracy of oral fluid testing compared with urine testing. The studies reported sensitivities in the range of 75% to 100%, with variability in the sensitivity by type of drug. The reported specificities are higher, generally greater than 90% across different drugs. No studies were identified on the clinical utility of oral fluid testing in pain management or substance abuse treatment. Hair testing cannot detect recent drug use (i.e., in the past few days) and thus has limited applicability to pain management or substance abuse treatment settings except, perhaps, for initial intake. There are no studies comparing the diagnostic accuracy of hair testing compared to urine testing in either of these settings. However, one relatively small study tested the hair and urine of known drug users recruited from a psychiatric clinic. The study looked for drug use over the past several months rather than the shorter timeframe generally needed in pain management or drug treatment settings. No studies were identified on the clinical utility of hair testing in pain management or substance abuse treatment. The current published evidence does not permit conclusions on the impact of hair or oral fluid drug testing on clinical outcomes.

Policy

In outpatient pain management, qualitative (i.e., immunoassay) urine drug testing may be considered medically necessary for:

- Baseline screening before initiating treatment or at the time treatment is initiated, when the following conditions are met:
 - An adequate clinical assessment of patient history and risk of substance abuse is performed;
 - Clinicians have knowledge of test interpretation;
 - There is a plan in place regarding how to use test findings clinically

- Subsequent monitoring of treatment at a frequency appropriate for the risk-level of the individual patient (see Policy Guidelines).

In outpatient substance abuse treatment, in-office or point-of-care qualitative (i.e., immunoassay) urine drug testing may be considered medically necessary under the following conditions:

- Baseline screening before initiating treatment or at the time treatment is initiated (i.e., induction phase), one time per program entry, when the following conditions are met:
 - An adequate clinical assessment of patient history and risk of substance abuse is performed;
 - Clinicians have knowledge of test interpretation;
 - There is a plan in place regarding how to use test findings clinically

- Stabilization phase - targeted weekly qualitative screening for a maximum of four weeks (see Policy Guidelines)
- Maintenance phase – targeted qualitative screening once every one to three months (see Policy Guidelines)

Quantitative (i.e., confirmatory) urine drug testing, in outpatient pain management or substance abuse treatment, may be considered medically necessary under the following circumstances:

- When immunoassays for the relevant drug(s) are not commercially available
- In specific situations for which quantitative drug levels are required for clinical decision making (see Policy Guidelines).

In outpatient pain management and outpatient substance abuse treatment, urine drug testing is considered not medically necessary when the above criteria are not met including but not limited to routine qualitative or quantitative urine drug testing (e.g., testing at every visit, without consideration for specific patient risk factors or without consideration for whether quantitative testing is required for clinical decision making).

In outpatient pain management and substance abuse treatment, hair drug testing and oral fluid drug testing are considered investigational.

Policy Guidelines

Pain management

The risk-level for an individual patient should include a global assessment of risk factors, and monitoring for the presence of aberrant behavior. Standardized risk assessment tools are available, such as the five-item Opioid Risk Tool (ORT). Another screening instrument is the Screener and Opioid Assessment for Patients in Pain, a 24-item tool.

Aberrant behavior is defined by one or more of the following:

- multiple lost prescriptions,
- multiple requests for early refill,
- obtained opioids from multiple providers,
- unauthorized dose escalation,
- apparent intoxication during previous visits.

Opinions vary on the optimal frequency of urine drug screening to monitor patients on opioid therapy for chronic pain. Screening frequency using a risk-based approach, as recommended by the Washington State Inter-Agency Guideline (Washington State Agency Medical Directors’ Group, 2015) is as follows:

- Low risk by ORT: Once a year
- Moderate risk by ORT: Twice a year
- High risk or opioid dose > 120 MED/d: Three to four times a year
- Recent history of aberrant behavior: Each visit

Note that the ORT is a copyrighted instrument (http://www.opioidrisk.com/node/884). The Canadian Guideline for Safe and Effective Use of Opioids for Chronic Non-Cancer Pain does not include specific screening frequencies but states that an individual patient’s risk for opioid misuse and addiction should be considered when deciding when to order a urine drug screen (http://nationalpaincentre.mcmaster.ca/opioid).

Substance abuse

Stabilization phase: Most patients are expected to be on a stable dose of opioid medication within four weeks
of initiating treatment. In some complicated patients, the stabilization phase may last longer than four weeks.

Maintenance phase: For most patients, targeted qualitative screening once every one to three months is sufficient during the maintenance phase of treatment. More frequent testing may be appropriate for some complicated patients.

Guidance on Quantitative (Confirmatory) Testing

Specific situations for quantitative drug testing may include, but are not limited to the following:

- Unexpected positive test inadequately explained by the patient
- Unexpected negative test (suspected medication diversion)
- Need for quantitative levels to compare with established benchmarks for clinical decision making

There may not be commercially available tests for certain synthetic or semisynthetic opioids.

The following information on immunoassay availability and diagnostic capacity is included in the Washington State Inter-Agency Guideline (Washington State Agency Medical Directors’ Group, 2015):

Natural opioids (e.g., codeine, morphine)

“Imunoassays for ‘opiates’ are responsive for morphine and codeine but do not distinguish which is present. Confirmatory testing is required to reliably identify drug(s) present. Since codeine is metabolized to morphine and small quantities to hydrocodone, these drugs may be found in the urine. Also, morphine may metabolize to produce a small amount (< 10%) of hydromorphone.”

Semisynthetic opioids (e.g., hydrocodone, hydromorphone, oxycodone, oxymorphone)

“Opiates’ immunoassays may also detect semisynthetic opioids depending on their crossreactivity pattern. However, a negative result does not exclude use of semisynthetic opioids. Confirmatory testing (GC/MS [gas chromatography/mass spectrometry] or LC/MS/MS [liquid chromatography tandem mass spectrometry]) is required to verify compliance with the prescribed semisynthetic opioid(s).”

Since hydrocodone is metabolized in small amounts to hydromorphone, both may be found in the urine. Likewise, oxycodone is metabolized to oxymorphone, so these may both be present in the urine of oxycodone users. However, the reverse is not true. In other words, hydromorphone and oxymorphone use does not result in positive screens for hydrocodone and oxycodone, respectively.

Synthetic opioids (e.g., fentanyl, meperidine, methadone, propoxyphene)

“Current ‘opiates’ immunoassays do not detect synthetic opioids. Thus confirmatory testing (GC/MS or LC/MS/MS) is needed to identify these drugs. If the purpose is to document compliance with treatment, the laboratory can be instructed to remove the cutoff concentration so that the presence of lower concentrations can be identified.”

The following table on interpreting unexpected results of urine drug tests was adapted from one developed by the Canadian National Opioid Use Guideline Group that was cited by American Society of Interventional Pain Physicians (ASIPP) in their guideline on prescribing opioids for chronic noncancer pain.

Interpreting Unexpected Urine Drug Tests Results

<table>
<thead>
<tr>
<th>Unexpected Result</th>
<th>Possible Explanations</th>
<th>Possible Actions for the Physician</th>
</tr>
</thead>
</table>
| Test is negative for prescribed opioid | • False negative
• Noncompliance
• Diversion | • Conduct confirmatory testing, specifying the drug of interest (e.g., oxycodone often missed by immunoassay)
• Take a detailed history of the patient’s medication use for the preceding 7 d |
Unexpected Result | Possible Explanations | Possible Actions for the Physician
---|---|---
Test is positive for nonprescribed opioid or benzodiazepines | • False positive
• Patient acquired opioids from other sources (double-doctoring, “street”) | • Repeat urine drug testing regularly
• Ask patients if they accessed opioids from other sources
• Assess for opioid misuse/addiction
• Review/revise treatment agreement |
UDS positive for illicit drugs (e.g., cocaine, cannabis) | • False positive
• Patient is occasional user or addicted to the illicit drug
• Cannabis is positive for patients taking certain medications (e.g., dronabinol) | • Repeat urine drug testing regularly
• Assess for abuse/addiction and refer for addiction treatment as appropriate |

UDS: urine drug screen.

Medicare Advantage

Diagnosis and treatment for substance abuse or dependence

For Medicare Advantage, for patients with a diagnosed Substance Use Disorder (SUD), it is **medically necessary** for the clinician to perform random UDT at random intervals in order to properly monitor the patient. Testing profiles must be determined by the clinician based on the following medical necessity guidance criteria:

- Patient history, physical examination, and previous laboratory findings
- Stage of treatment or recovery;
- Suspected abused substance;
- Substances that may present high risk for additive or synergistic interactions with prescribed medication (e.g., benzodiazepines, alcohol).

Frequency of Presumptive UDT for Substance Use Disorder (SUD)

The testing frequency must meet medical necessity and be documented in the clinician’s medical record.

- a. For patients with zero to 30 consecutive days of abstinence, presumptive UDT is expected at a frequency of one to three presumptive UDT per week. More than three presumptive panels in one week are not reasonable and necessary.
- b. For patients with 31 to 90 consecutive days of abstinence, presumptive UDT is expected at a frequency of one to three UDT per week. More than three presumptive UDT in one week is not reasonable and necessary.
- c. For patients with > 90 consecutive days of abstinence, presumptive UDT is expected at a frequency of one to three UDT in one month. More than three physician-directed UDT in one month is not reasonable and necessary.

Frequency of Definitive UDT for SUD

Depending on the patient’s specific substance use history, definitive UDT to accurately determine the specific drugs in the patient’s system may be **medically necessary**. Definitive testing may be ordered when accurate and reliable results are necessary to integrate treatment decisions and clinical assessment.
a. For patients with zero to 30 consecutive days of abstinence, definitive UDT is expected at a frequency not to exceed one physician-directed testing profile in one week.

b. For patients with 31 to 90 consecutive days of abstinence, definitive UDT is expected at a frequency of one to three physician-directed testing profiles in one month. More than three UDT in one month is not reasonable and necessary.

c. For patients with > 90 day of consecutive abstinence, definitive UDT is expected at a frequency of one to three physician-directed testing profiles in three months. More than three definitive UDT in three months is not reasonable and necessary.

Treatment for patients on chronic opioid therapy (COT)

Criteria to establish medical necessity for drug testing must be based on patient-specific elements identified during the clinical assessment, and documented by the clinician in the patient’s medical record and minimally include the following elements:

- Patient history, physical examination and previous laboratory findings;
- Current treatment plan;
- Prescribed medication(s)
- Risk assessment plan

COT Baseline Testing: *Medically necessary* initial presumptive and/or definitive COT patient testing may include amphetamine/methamphetamine, barbiturates, benzodiazepines, cocaine, methadone, oxycodone, tricyclic antidepressants, tetrahydrocannabinol, opioids, opiates, heroin, and synthetic/analog or “designer” drugs.

COT Monitoring Testing: Ongoing testing may be *medically necessary* based on the patient history, clinical assessment, including medication side effects or inefficacy, suspicious behaviors, self-escalation of dose, doctor-shopping, indications/symptoms of illegal drug use, evidence of diversion, or other clinician documented change in affect or behavioral pattern.

UDT Frequency Based on Validated Risk Assessment and Stratification (see Medicare Advantage Policy Guidelines):

Testing is **medically necessary** when based on clinician’s documented medical necessity and reviewed by the clinician in the management of prescribing/renewing a controlled substance for every risk group outlined below.

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>Baseline</th>
<th>Frequency of Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Risk</td>
<td>Prior to Initiation of COT</td>
<td>Random testing 1-2 times every 12 months for prescribed medications, non-prescribed medications that may pose a safety risk if taken with prescribed medications, and illicit substances based on patient history, clinical presentation, and/or community usage.</td>
</tr>
<tr>
<td>Moderate Risk</td>
<td>Prior to Initiation of COT</td>
<td>Random testing 1-2 times every 6 months for prescription medications, non-prescribed medication that may pose a safety risk if taken with prescribed medications, and illicit substances, based on patient history, clinical presentation, and/or community usage.</td>
</tr>
<tr>
<td>High Risk</td>
<td>Prior to Initiation of COT</td>
<td>Random testing performed 1-3 times every 3 months for prescribed medications, non-prescribed medications that may pose a safety risk if mixed with prescribed and illicit substances based on patient history, clinical presentation and/or community usage.</td>
</tr>
</tbody>
</table>
Definitive testing to confirm a negative presumptive UDT result, upon the order of the clinician, is **medically necessary** in the following circumstances:

- a. The result is inconsistent with a patient’s self-report, presentation, medical history, or current prescribed medication plan (should be present in the sample);
- b. Following a review of clinical findings, the clinician suspects use of a substance that is inadequately detected or not detected by a presumptive UDT; or
- c. To rule out an error as the cause of a negative presumptive UDT result.

Definitive testing to confirm a presumptive UDT positive result, upon the order of the clinician, is **medically necessary** when the result is inconsistent with the expected result, a patient’s self-report, presentation, medical history, or current prescribed medication plan.

Routine standing orders for all patients in a physician’s practice are **not medically necessary**.

Medicare Advantage Policy Guidelines

For COT monitoring testing:

The frequency of testing must be based on a complete clinical assessment of the individual’s risk potential for abuse and diversion using a validated risk assessment interview or questionnaire and should include the patient’s response to prescribed medications and the side effects of medications.

The clinician should perform random UDT at random intervals, in order to properly monitor a patient.

Any additional definitive UDT beyond recommendations must be justified by the clinician in the medical record in situations in which changes in prescribed medications may be needed, such as:

- Patient response to prescribed medication suddenly changes
- Patient side effect profile changes
- To assess for possible drug-drug interactions
- Sudden change in patient’s medical condition
- Patient admits to use of illicit or non-prescribed controlled substance.

Background

According to an evidence assessment by the American Society of Interventional Pain Physicians, approximately one-third of chronic pain patients do not use opioids as prescribed or may abuse them. Moreover, studies have found that a substantial proportion of chronic pain patients inaccurately report nonadherence to prescribed medications and use of illicit drugs.

Various strategies are available to monitor pain management and substance abuse treatment patients, and multicomponent interventions are often used. Many settings require patients to sign a contract before they are given a prescription for opioids. The contracts generally involve obtaining patients’ agreement on behaviors they will engage in during the treatment period (e.g., taking medication as prescribed) and not engage in (e.g., selling prescribed medication and/or obtaining additional prescriptions from other physicians).

Confirming whether patients follow these behavioral guidelines can be a challenge. Risk-assessment screening instruments, such as the Screener and Opioid Assessment for Patients with Pain, and the Opioid Risk Tool, can aid in the assessment of patients’ risk for inappropriate drug use. In addition, the presence of “aberrant
“behaviors” can be used as a marker for patients who are at high risk for deviating from treatment protocols. Aberrant behaviors include multiple lost prescriptions, obtaining prescriptions from other practitioners, and displaying evidence of acute intoxication during office visits.

Another strategy for monitoring patients is testing of biological specimens for the presence or absence of drugs. Currently, urine is the most commonly used biological substance. Advantages of urine drug testing (UDT) are that it is readily available and standardized techniques for detecting drugs in urine exist. Other biological specimens (e.g., blood, oral fluids, hair, sweat) can also be tested and may gain in popularity over time as techniques for collecting and analyzing these specimens become more standardized. In addition to urine testing, this review will address testing for oral fluids and hair.

Urine Drug Testing

There are two primary categories of UDT.

Immonoassay Testing

Immonoassay testing, also called qualitative testing or screening, can be performed either in a laboratory or at point-of-service. Immunoassay tests are based on the principle of competitive binding and use antibodies to detect a particular drug or drug metabolite in a urine sample. With competitive binding, a fixed amount of a labeled drug is added to the urine sample, and the drug or metabolite in the sample competes with the labeled drug for binding sites on the antibody. The amount of labeled antigen that binds with the antibody is inversely proportional to the amount of the drug or metabolite in the sample.

Immunoassay tests vary in the type of compounds they can detect. Some detect specific drugs and may fail to recognize similarly structured drugs within the same class. Other immunoassays identify only classes of drugs and thus results cannot be used to determine which drug a patient is taking. For example, a positive result to an opiate immunoassay can be due to morphine or hydromorphone. The degree of crossreactivity (i.e., an antibody’s reactivity with a compound other than the target of the test) varies widely among immunoassays.

Immunoassay findings are generally reported qualitatively as either positive (drug level above a prespecified threshold) or negative (drug level below a prespecified threshold). Raising or lowering the threshold thus changes the proportion of positive tests. A negative test is interpreted as a level below the threshold and does not necessarily mean that the drug or metabolite is absent.

Immunoassays generally have a rapid turnaround time, to within minutes for onsite tests, and one to four hours for laboratory-based tests.

Specific Drug Identification

Confirmatory tests are always performed in a laboratory. Gas chromatography/mass spectrometry (GC/MS) is considered to be the criterion standard for confirmatory testing. This technique involves using GC to separate the analytes in a specimen and for MS to identify the specific molecular structures of the drug and its metabolites. The tests are able to quantify the amount of drug or metabolite present in the urine sample. Quantitative tests can be used to confirm the presence of a specific drug identified by a screening test and can identify drugs that cannot be isolated by currently available immunoassays. Results are reported as the specific levels of substances detected in the urine. GC/MS generally requires specification of the drug or drugs to be identified. Alternatively, “broad-spectrum screens” can be conducted. There is a several-day turnaround time for GC/MS testing.

An issue with both types of UDT is the possibility of sample tampering to mask the presence of illegal drugs. A variety of products and techniques are available to patients, and can be as simple as drinking a large amount of water to dilute the sample. There are also commercial dilution and cleaning products, additives, and urine substitutes. Some of these techniques can be detected by visual inspection of the sample (e.g., color) or by onsite testing of sample characteristics including urine temperature, creatinine concentration, and specific gravity.
In addition, correct interpretation of UDT results is very important. Knowledge of drug metabolites is essential for accurate interpretation. Accurate interpretation of test results also requires knowledge of the drug manufacturing process. For example, due to manufacturing impurities, a small amount of hydrocodone may be present in urine samples from patients prescribed oxycodone. Thus, it would be acceptable to have this degree of hydrocodone if high amounts of oxycodone were also present.

There are various approaches to incorporating UDT into pain management and substance abuse treatment settings. Most commonly, patients undergo UDS before beginning treatment to verify current drug use. Some clinicians believe that UDT should be routinely used to establish baseline information about substance use, but the optimal frequency and interval of testing remains uncertain. A universal approach to screening may uncover more inappropriate use and may reduce patients’ sense that testing is being performed due to a lack of trust. However, routine universal screening may place an unnecessary burden on the health care system and on the doctor-patient relationship. An alternative approach is selective testing of patients who are judged to be at increased risk for drug misuse.

Existing protocols vary for use of qualitative versus quantitative tests. Some of these involve conducting routine confirmation of positive qualitative tests with quantitative testing. Others use selective confirmation of positive qualitative tests, such as when an unexpected immunoassay result is not adequately explained by the patient. There is also a mixed approach, with routine confirmation of qualitative tests only for drugs with poor-performing immunoassays.

Full informed consent is a requirement before UDT. Patients should be informed of the specific drug testing protocol before treatment and should provide written agreement with the plan for monitoring. As stated in a joint U.S. Veterans Affairs/Department of Defense guideline, patients’ refusal to consent to urine testing should be considered as one factor in the overall assessment of patients’ ability to adhere to treatment.5

Oral Fluid Drug Testing

Oral fluid, liquid samples obtained from the oral cavity, can potentially be used to test for drug use. Oral fluid contains secretions from several different sources, including secretions from the three pairs of major salivary glands (parotid, sublingual, and submandibular), secretions from the minor salivary glands, oronasopharyngeal secretions, and cellular debris. The mixture of fluids obtained varies depending on the collection method used (e.g., spitting, suctioning, draining, or collection on some type of absorbent material). In addition, drug concentrations can be affected by the collection method, as well as by whether or not saliva stimulation methods were used. Several collection devices are commercially available in the United States and these generally involve collection on absorbent material (e.g., foam pad). Pads are then placed in a container with a stabilizing buffer solution. Drug concentrations may also vary depending on how the oral fluid is recovered from the collection device (e.g., by centrifugation or by applying pressure). Another issue is that drug concentrations may not reflect blood levels because of residual amounts of drug (specifically those ingested or smoked) remaining in the oral cavity after recent use.

Analysis techniques must be able to detect drugs present in low concentration and in a small volume of fluid (often less than one mL). Immunoassay techniques are available to detect drugs in oral fluid; these require a small sample volume (≈25 μL). Immunoassays tend to be relatively sensitive techniques but they tend to have low specificity. Confirmation analysis is generally performed using MS-based methods. In recent years, advancements have been made in MS analysis techniques, including the development of multianalyte liquid chromatography-mass spectrometry (LC-MS) methods.

A practical advantage of oral fluid collection compared with urine is that samples can be obtained under direct supervision and without loss of privacy. It has been used in situations where urine sampling is impractical, such as testing drivers during traffic stops. Oral fluid sampling also has the potential to be useful in the pain manage-
ment or substance abuse treatment settings, particularly when substitution or tampering with urine drug samples is suspected.

Hair Testing

Hair is made up of protein that traps chemicals in the blood at the time the hair was made in the hair follicle. Hair on the human head grows at the rate of approximately 0.5 inch per month. Thus, a 1.5-inch hair sample could be used to reveal drug use during the previous 90 days. Potential advantages of hair as a drug testing source include that its collection is noninvasive; it is easy to collect, store, and ship; sufficient samples are generally available for testing and retesting; and it is difficult to substitute or adulterate. Potential disadvantages are that hair analysis cannot detect recent drug use (i.e., within past seven days), it is difficult to detect very light drug use (e.g., a single episode), and the fact that drug levels can be due to environmental exposure as well as drug use. In addition, variation in hair texture as well as cosmetic hair treatments can affect drug incorporation into hair and the accuracy of drug tests on hair samples. As with other types of samples, hair can be initially tested using immunoassay techniques, with confirmation by MS-based methods. Hair testing has been used in a variety of situations where detection of drug use during the previous several months is sought (e.g., preemployment screening, post-drug-treatment verification of relapse).

Regulatory Status

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Gas chromatography/mass spectrometry (GC/MS) tests and some immunoassays are performed in laboratory settings. Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration (FDA) has chosen not to require any regulatory review of this test.

A CLIA waiver is available for use of certain point-of-care immunoassays. Tests eligible for a CLIA waiver are those considered to be simple, with low risk of error and low potential for harm. FDA is tasked with approving manufacturers’ applications for test system waivers. There are commercially available CLIA-waived urine tests for drugs such as cocaine, methadone, morphine/opiates, and oxycodone. There are also commercially available hair testing tests such as Quest Diagnostics ELISA tests for amphetamines, opiates, cocaine, marijuana metabolites, and phencyclidine. In addition, Omega Laboratories offers hair drug screening for cocaine and cocaine metabolites.

Several oral fluid drug test collection devices have been cleared for marketing by FDA through the 510(k) process. They include:

- **Intercept™ Oral Fluid Drug Testing System (OraSure Technologies, Bethlehem, PA)**
- **Oral-Eze Saliva Collection System (Quest Diagnostics, Madison NJ)**
- **Quantisal® Oral Fluid Collection Device (Alere, Waltham, MA)**

In addition to the oral fluid collection devices, FDA has cleared a number of assays for analysis of oral samples. For example, there are FDA-cleared assays for nine drugs collected with the Intercept device. These are amphetamines, methamphetamine, cocaine/metabolite, opiates, marijuana/THC, phencyclidine, barbiturates, benzodiazepines, and methadone.

Related Protocol

Biofeedback as a Treatment of Chronic Pain
Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this Protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

24. NGS Local Coverage Determination (LCD): Urine Drug Testing (L36037), Revision Effective Date for services performed on or after 01/01/2016.